Department of Computer Science

MSc Computer Science Summer Projects 2025

LLM-Powered Anti-Pattern oloring AL Prostof Concente
ReSOlution Project with UCL and IBM

Client: Amrin Maria & John McNamara, IBM

Andrei Constantin, andrei.constantin.24@ucl.ac.uk
Abhaya Ghimire, abhaya.ghimire.24@ucl.ac.uk
Avinash Mallick, avinash.mallick.24@ucl.ac.uk
Gavriel Neuman, gavriel.neuman.24@ucl.ac.uk
Maogin Lei, maogin.lei.24@ucl.ac.uk

Vamsi Mukkamala, vamsi.mukkamala.24@ucl.ac.uk

<|l|

mailto:andrei.constantin.24@ucl.ac.uk
mailto:abhaya.ghimire.24@ucl.ac.uk
mailto:avinash.mallick.24@ucl.ac.uk
mailto:gavriel.neuman.24@ucl.ac.uk
mailto:maoqin.lei.24@ucl.ac.uk
mailto:vamsi.mukkamala.24@ucl.ac.uk

Department of Computer Science

Who are we?

* Master’s students at UCL in Software Systems Engineering.

« Collaborating with IBM representatives Dr. Amrin Maria and John
McNamara.

« Working under the tutelage of Dr. Jens Krinke, our supervisor at UCL.

Department of Computer Science

What are we building?

An automated tool to help developers detect and fix anti-patterns, with a
focus on legacy codebases.

Harnessing the power of Large Language Models (LLMs) like IBM
Granite.

Using state-of-the art agentic approaches both in the cloud (IBM
WatsonX) and locally, on personal devices.

Designed with sustainability in mind, minimising ecological cost wherever
possible.

Department of Computer Science

Why are we building this tool?

* Anti-patterns are code structures that technically work but unintentionally
reflect poor practice and are hard to maintain, scale, or optimise.

« They waste resources, increase technical debt, and often require
significant developer effort to resolve.

* Legacy codebases are especially vulnerable, as they tend to accumulate
large volumes of anti-patterns over time, making long-term maintenance
costly.

* Yet fixing them is rarely prioritised, as it demands high effort with little
short-term return, despite being critical for the longevity of software.

Department of Computer Science

How would one use it?

Example 1 — During regular development

« Qur tool can be used ad hoc, by ingesting individual code files or
snippets, much like querying ChatGPT during development.

It automatically detects anti-patterns, formulates appropriate resolution
strategies, and outputs a corrected version of the code.

* It also generates a human-readable explanation of the issues found and
the rationale behind the fix, which is useful for documentation and future
reference.

Department of Computer Science

Analysis Agent Response

The issues detected are:

1. God Class

Issue location: GodClass.java

The class GodClass has too many responsibilities, including process logic, database
connection handling, and global state management.

2. Duplicate Code (Copy-Paste Logic)

Issue location: GodClass.java:doEverything() method

The same block of code is repeated twice to set the 'status' variable, indicating a lack of
DRY (Don't Repeat Yourself) principle.

3. Unused Variable

Issue location: GodClass.java:processThing() method

The 'temp' variable is declared but never used, indicating poor code quality and potential
for removal to simplify the class.

Get Analysis

Refactoring Strategy Agent
The refactoring strategies are:

1. God Class

Issue suggestion:

Extract methods and responsibilities into smaller, focused classes such as
ProcessManager, DatabaseConnector, and StatusHandler.

This adheres to the Single Responsibility Principle, improving code maintainability and
readability.

2. Duplicate Code (Copy-Paste Logic)

Issue suggestion:

Create a separate method to handle setting the 'status' variable based on conditions, then
call this method where needed.

Justification:
This reduces redundancy and adheres to the DRY principle, making the code cleaner and
easier to maintain.

3. Unused Variable

Issue suggestion:

Remove the unused 'temp' variable in the processThing method as it serves no purpose.
Justification:

Eliminating dead code simplifies the class and reduces cognitive load for future
maintainers.

Get Strategy

Department of Computer Science

How would one use it?

Example 2 — Automated codebase resolution

« Qur tool can be run across entire codebases, not just individual files,
enabling large-scale detection and resolution of anti-patterns.

* |t generates versioned code changes that are easy to review and
integrate, ensuring developers remain in control of what gets applied.

 This significantly accelerates the software modernisation process by
automating one of its most time-consuming stages.

« Engineering teams can now redirect their effort toward more meaningful
work such as building features or improving design.

Department of Computer Science

Where we are today

Discover Anti-

A functional prototype capable of Patterns
identifying anti-patterns and
recommending resolution strategies for
individual files and snippets. Design

Comprehensive
« A highly extensible architecture e Streteg)
supporting iterative development.
» A well-defined system design, with Generate Code

Fixes

Implementation progressing across key
components.

Department of Computer Science

Where we’ll be tomorrow

« Automated codebase resolution producing change sets ready
for developer review.

« Enhanced pattern detection through integration with static
analysis tools like SonarQube.

« Seamless switching between different LLMs for benchmarking
and refinement.

* Further optimisation efforts to reduce energy consumption and
improve efficiency.

Department of Computer Science

Thank you!

GitHub: Public repository coming soon!

Weekly Blog Contact Details

Ok0

	Slide 1: LLM-Powered Anti-Pattern Resolution Project
	Slide 2: Who are we?
	Slide 3: What are we building?
	Slide 4: Why are we building this tool?
	Slide 5: How would one use it?
	Slide 6
	Slide 7: How would one use it?
	Slide 8: Where we are today
	Slide 9: Where we’ll be tomorrow
	Slide 10: Thank you!

